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Abstract. Using U(1)Q invariance, the photon eigenstate and the matching gauge coupling constants in
SU(3)C ⊗SU(3)L ⊗U(1)X models with arbitrary β are given. The mass matrix of the neutral gauge bosons
is exactly diagonalized, and the photon eigenstate is independent on the symmetry breaking parameters –
the VEVs of the Higgs scalars. By obtaining the electromagnetic vertex, the model is embedded naturally
into the standard model.
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1 Introduction

The detection of neutrino oscillations [1] experimentally
indicates that neutrinos are massive particles and that
flavor lepton number is not conserved. Since in the stan-
dard model (SM), neutrinos are massless and flavor lepton
number is conserved, neutrino oscillation experiments are
a clear sign that the SM has to be extended.

A very common alternative to solve some of the prob-
lems of the SM consists of enlarging the group of the
gauge symmetry, where the larger group properly embeds
the SM. For instance, the SU(5) grand unification model
[2] can unify the interactions and predicts electric charge
quantization, while the group E6 can also unify the in-
teractions and might explain the masses of the neutrinos
[3], etc. [4]. Nevertheless, such models cannot explain the
generation number problem.

A very interesting alternative to explain the origin of
generations comes from the cancelation of chiral anomalies
[5]. In particular, models with the gauge group G331 =
SU(3)C ⊗SU(3)L ⊗U(1)X , also called 3-3-1 models [6–8],
arise as a possible solution to this puzzle, since some of
such models require three generations in order to cancel
chiral anomalies completely. An additional motivation to
study this kind of models comes from the fact that they
can also predict charge quantization [9].

In the literature on 3-3-1 models, it is known that
the matching of gauge coupling constants at the SU(3)L
⊗U(1)X breaking is dependent on the constraints among
the VEVs [6]. In addition, the independence on the VEVs
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of the photon eigenstate and mass has not been explained
yet [10].

In this paper, we have pointed out that the photon
eigenstate is independent on the VEVs; and the matching
of gauge coupling constants is not dependent on VEVs
structure.

This paper is organized as follows. In Sect. 2 we re-
call some features of the 3-3-1 models with arbitrary
β and study the mass Lagrangian of the neutral gauge
bosons, the photon eigenstate and mass. Matching gauge
coupling constants and diagonalizing the neutral bosons
gauge mass matrix are obtained in Sect. 3. Finally, our
conclusions are summarized in the last section.

2 Photon eigenstate

The 3-3-1 model with arbitrary β [11] has the electric
charge operator in the following form:

Q = T3 + βT8 + X, (2.1)

where T3 = λ3/2, T8 = λ8/2 are the SU(3)L gauge
charges, and X is the U(1)X gauge charge.

Under the gauge symmetry G331, the fermion represen-
tations are given by the triplets 3, antitriplets 3∗, and sin-
glets 1 (for the right-handed counterparts) of the SU(3)L
group. In order to cancel the anomalies, the same number
of fermion triplets and antitriplets must be present [11].

A triplet of the SU(3)L group is composed of a doublet
2 and a singlet 1 of the SU(2)L group of the SM; therefore,
it is decomposed as follows:(

u, d, s
)T

=
(

u, d
)T

⊕ s, (2.2)
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or
(3, X) = (2, X) ⊕ (1, X), (2.3)

where u, d, and s denote the first and the second members
of the doublets, and of the singlets, respectively. In the
case of an antitriplet 3∗, it is also decomposed into an
antidoublet 2∗ and a singlet of the SU(2)L group:

(
d, −u, s′

)T
=

(
d, −u

)T
⊕ s′, (2.4)

or
(3∗, −X) = (2∗, −X) ⊕ (1, −X). (2.5)

To find the hyper-charge Y of the doublets and the sin-
glets, we should use Y = 2(βT8 + X) which is obtained
directly from (2.1).

Spontaneous symmetry breaking from the G331 to the
GSM group of the SM [12] will allow the singlet member
to be separated from the triplets or antitriplets and get
mass. This is achieved by a Higgs scalar triplet χ with the
VEV as follows:

〈χ〉T =
(

0, 0,
vs√
2

)
. (2.6)

Then the neutral gauge bosons of the theory get mass from

Lχ
mass = (DH

µ 〈χ〉)+(DHµ〈χ〉), (2.7)

where the subscripts H denote the diagonal part of the
covariant derivative

DH
µ = ∂µ + igT3W

3
µ + igT8W

8
µ + igXT9XχBµ. (2.8)

Here g and gX are the gauge coupling constants of the
SU(3)L and U(1)X groups, respectively. Xχ is the U(1)X

charge of the χ Higgs scalar. T9 = diag(1, 1, 1)/
√

6 is cho-
sen such that Tr(TaTb) = δab/2; a, b = 1, 2, ..., 9. Substi-
tuting the charge Xχ from (2.1) into (2.8), we get

DH
µ = ∂µ + igT3W

3
µ + igT8W

8
µ

+i
gX√

6
Bµ (Q − T3 − βT8) . (2.9)

The U(1)Q invariance requires Q〈χ〉 = 0; therefore, we get

DH
µ 〈χ〉 =

igvs

2
√

2

(
− 2√

3
W 8

µ +
2t√
6
Bµ

β√
3

)

=
igvs

2
√

2
∆3µ, (2.10)

where the following notation is used:

∆3µ ≡
(

− 2√
3
W 8

µ +
2t√
6
Bµ

β√
3

)
, (2.11)

t ≡ gX/g. (2.12)

Hence

Lχ
mass =

g2vs
2

8
∆2

3, (2.13)

where ∆2
3 = ∆3µ∆µ

3 .
In the second step of symmetry breaking [5,6,12], the

GSM group must be decomposed into the SU(3)C ⊗U(1)Q

group, and two η, ρ Higgs triplets are introduced with the
following VEVs:

〈η〉T =
(

vu√
2
, 0, 0

)
,

〈ρ〉T =
(

0,
vd√
2
, 0

)
. (2.14)

The neutral gauge bosons also gain mass from two La-
grangians given by

Lη
mass = (DH

µ 〈η〉)+(DHµ〈η〉), (2.15)

Lρ
mass = (DH

µ 〈ρ〉)+(DHµ〈ρ〉). (2.16)

Noting that Q〈η〉 = Q〈ρ〉 = 0, we get

DH
µ 〈η〉 =

igvu

2
√

2

[
W 3

µ +
1√
3
W 8

µ +
2t√
6
Bµ

(
−1

2
− β

2
√

3

)]

=
igvu

2
√

2
∆1µ, (2.17)

DH
µ 〈ρ〉 =

igvd

2
√

2

[
−W 3

µ +
1√
3
W 8

µ +
2t√
6
Bµ

(
1
2

− β

2
√

3

)]

=
igvd

2
√

2
∆2µ; (2.18)

here

∆1µ ≡
[
W 3

µ +
1√
3
W 8

µ +
2t√
6
Bµ

(
−1

2
− β

2
√

3

)]
, (2.19)

∆2µ ≡
[
−W 3

µ +
1√
3
W 8

µ +
2t√
6
Bµ

(
1
2

− β

2
√

3

)]
. (2.20)

Hence

Lη
mass =

g2v2
u

8
∆2

1,

Lρ
mass =

g2v2
d

8
∆2

2. (2.21)

Finally, the mass Lagrangian of the neutral gauge bosons
is given by

LNCC
mass = Lη

mass + Lρ
mass + Lχ

mass,

=
g2

8
(
v2

u∆2
1 + v2

d∆2
2 + v2

s∆2
3
)
. (2.22)

In general, any 3-3-1 model needs to have three Higgs
triplets for breaking the G331 group into the SU(3)C ⊗
U(1)Q group. However, some 3-3-1 models need less than
three Higgs triplets [13]. For our purpose in obtaining the
mass matrix of the neutral gauge bosons, this corresponds
to vanishing vu or vd. In the case with more than three
Higgs triplets, one just makes the following appropriate
replacements:

v2
u → v2

u + v2
u1 + v2

u2 + ...,
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v2
d → v2

d + v2
d1 + v2

d2 + ...,

v2
s → v2

s + v2
s1 + v2

s2 + ..., (2.23)

where vui, vdj , vsk are the VEVs of the additional Higgs
triplets. They belong to the up, down, and singlet mem-
bers, respectively. This also remains correct for the cases if
a Higgs triplet has two neutral members with the non-zero
VEVs [13], and for models with Higgs antitriplets.

In some models, for example the minimal 3-3-1 model
[6], to give mass to all leptons, we have to introduce a
Higgs sextet. Let us denote the Higgs sextet by Γij . Then,
the mass Lagrangian will get an addition

LΓ
mass = (DH

µ 〈Γ 〉ij)+(DHµ〈Γ 〉ij), (2.24)

where

DH
µ 〈Γ 〉ij = ig

[
(W 3

µT3 + W 8
µT8)k

i 〈Γ 〉kj

+ (W 3
µT3 + W 8

µT8)k
j 〈Γ 〉ki

]
+

igX√
6

XΓ Bµ〈Γ 〉ij

= ig

[(
W 3

µT3 + W 8
µT8 +

t√
6
(Q − T3 − βT8)Bµ

)k

i

〈Γ 〉kj

]

+ ig

[(
W 3

µT3 + W 8
µT8 +

t√
6
(Q − T3 − βT8)Bµ

)k

j

〈Γ 〉ki

]

=
ig
2


 2〈Γ 〉11∆1µ 〈Γ 〉12(∆1µ + ∆2µ)

〈Γ 〉12(∆1µ + ∆2µ) 2〈Γ 〉22∆2µ

〈Γ 〉13(∆1µ + ∆3µ) 〈Γ 〉23(∆2µ + ∆3µ)
(2.25)

〈Γ 〉13(∆1µ + ∆3µ)
〈Γ 〉23(∆2µ + ∆3µ)

2〈Γ 〉33∆3µ


 .

It is easy to verify that

∆1µ + ∆2µ + ∆3µ = 0. (2.26)

Finally, the mass term for neutral gauge bosons from the
sextet is given by

LΓ
mass =

g2

2
{
[2〈Γ 〉211 + 〈Γ 〉223]∆2

1 + [2〈Γ 〉222 + 〈Γ 〉213]∆2
2

+ [2〈Γ 〉233 + 〈Γ 〉212]∆2
3
}

. (2.27)

Note that only neutral members in the sextet can have
non-zero VEVs. From (2.27) we see that the general form
of the mass Lagrangian (2.22) is not changed by adding
LΓ

mass.
In order to generate the fermion masses, the Higgs

bosons should lie in either the triplet, antitriplet, sextet,
or singlet representation of SU(3)L [12]. In the latter case,
the singlet must be neutral, and it does not give mass to
gauge bosons. So, we conclude that for any 3-3-1 model,
the mass matrix of the neutral gauge bosons always has
the form given in (2.22).

The mass Lagrangian (2.22) can be rewritten

Lmass =
1
2
V TM2V, (2.28)

where V T = (W 3, W 8, B), and

M2 =
1
4
g2


m11 m12 m13

m12 m22 m23

m13 m23 m33


 , (2.29)

with

m11 = v2
u + v2

d,

m12 =
1√
3

(
v2

u − v2
d

)
,

m13 =
t√
6

[
v2

u

(
−1 − β√

3

)
− v2

d

(
1 − β√

3

)]
,

m22 =
1
3

(
v2

u + v2
d + 4v2

s

)
,

m23 =
t

3
√

2

[
v2

u

(
−1 − β√

3

)
+ v2

d

(
1 − β√

3

)
− v2

s

4β√
3

]
,

m33 =
t2

6

[
v2

u

(
−1 − β√

3

)2

+ v2
d

(
1 − β√

3

)2

+ v2
s

(
2β√

3

)2
]

. (2.30)

It can be checked that the matrix M2 has a non-
degenerate zero eigenvalue for any breaking parameters
in any 3-3-1 model. Therefore, the zero eigenvalue is iden-
tified with the photon mass, M2

γ = 0.
The eigenstate with the zero eigenvalue can be ob-

tained directly from the following equation:

M2


Aγ1

Aγ2

Aγ3


 = 0. (2.31)

We then get

Aγ =


 t

βt√
6


 1√

6 + (1 + β2)t2
. (2.32)

So the physical photon field Aµ is given by

Aµ =
t√

6 + (1 + β2)t2
W 3

µ +
βt√

6 + (1 + β2)t2
W 8

µ

+
√

6√
6 + (1 + β2)t2

Bµ. (2.33)

For any 3-3-1 model, we see that the photon eigen-
state and mass are not dependent on the VEVs (vu, vd, vs).
These are a natural consequence of the U(1)Q invariance
– the conservation of the electric charge.

3 Matching gauge coupling constants

To embed the 3-3-1 model into the SM, we will work with
the electromagnetic vertex. Let us denote two remain mas-
sive fields by Z1

µ, Z2
µ. We change basis by the unitary ma-

trix
(Aµ, Z1

µ, Z2
µ) = (W 3

µ , W 8
µ , Bµ)U, (3.1)
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where U has the following form:

U =




t√
6+(1+β2)t2

U12 U13

βt√
6+(1+β2)t2

U22 U23
√

6√
6+(1+β2)t2

U32 U33


 . (3.2)

Here the elements in the second and third columns need
not necessarily be determined. From (3.1) and (3.2), we
get

W 3
µ =

t√
6 + (1 + β2)t2

Aµ + U12Z
1
µ + U13Z

2
µ,

W 8
µ =

βt√
6 + (1 + β2)t2

Aµ + U22Z
1
µ + U23Z

2
µ,

Bµ =
√

6√
6 + (1 + β2)t2

Aµ + U32Z
1
µ + U33Z

2
µ. (3.3)

The interactions among the gauge bosons and fermions
are given by

LF = R̄iγµ

(
∂µ + i

gX√
6
XBµ

)
R

+ L̄iγµ

(
∂µ + igW a

µ

λa

2
+ i

gX√
6
XBµ

)
L, (3.4)

where R represents any right-handed singlet and L any
left-handed triplet or antitriplet. Substituting W 3, W 8, B
from (3.3) into (3.4), for R = eR with XeR = −1 and
L = (νeL, eL, EL)T with XL = −1/2 − β/2

√
3, we get

Lint
ēeγ = −ēRiγµ

[
igX√

6

√
6√

6 + (1 + β2)t2

]
AµeR

+ ēLiγµ

[
− ig

2
t√

6 + (1 + β2)t2

+
ig

2
√

3
βt√

6 + (1 + β2)t2

− igX√
6

(
1
2

+
β

2
√

3

) √
6√

6 + (1 + β2)t2

]
AµeL

=
gX√

6 + (1 + β2)t2
ēγµeAµ. (3.5)

The coefficient of the ēeγ vertex in (3.5) is identified
with the electromagnetic coupling constant

gX√
6 + (1 + β2)t2

≡ e. (3.6)

In the SM, we have

g2gY√
g2
2 + g2

Y

= e, (3.7)

where g2, gY are coupling constants of the SU(2)L and
U(1)Y gauge group, respectively. Using continuation of

the gauge coupling constant of the SU(3)L group at the
spontaneous symmetry breaking point,

g = g2 ≡ g, (3.8)

from (3.6) and (3.7), we get

1
g2

Y

=
β2

g2 +
6

g2
X

. (3.9)

From (3.6), we obtain

t√
6 + (1 + β2)t2

=
e

g
. (3.10)

As in the SM, we put

t√
6 + (1 + β2)t2

= sin θW. (3.11)

Equation (3.9) yields

t =
√

6tW√
1 − β2t2W

. (3.12)

Hence, the photon eigenstate can be rewritten in the form

Aµ = sWW 3
µ + cW

(
βtWW 8

µ +
√

1 − β2t2WBµ

)
. (3.13)

From the orthogonal condition of the photon eigenstate to
the two remaining gauge vectors, we can write

Zµ = cWW 3
µ − sW

(
βtWW 8

µ +
√

1 − β2t2WBµ

)
,(3.14)

Z ′
µ =

√
1 − β2t2WW 8

µ − βtWBµ. (3.15)

Therefore, in this basis, the mass matrix M2 → M2′
has

the following form:

M2′
=


0 0 0

0 M2
Z M2

ZZ′

0 M2
ZZ′ M2

Z′


 , (3.16)

where

M2
Z =

g2

4c2
W

(v2
u + v2

d),

M2
ZZ′ =

g2

4
√

3c2
W

√
1 − (1 + β2)s2

W

×
{[(√

3β − 1
)

s2
W + 1

]
v2

u +
[(√

3β + 1
)

s2
W − 1

]
v2

d

}
,

M2
Z′ =

g2

12 (1 − β2t2W)

×
[(

1 +
√

3βt2W

)2
v2

u +
(
1 −

√
3βt2W

)2
v2

d + 4v2
s

]
. (3.17)
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The matrix M2′
gives the mixings between Zµ and Z ′

µ; by
rotating over an angle φ in the plane (Zµ, Z ′

µ) → (Z1
µ, Z2

µ),
the mass eigenvectors are

Z1
µ = Zµ cos φ − Z ′

µ sin φ,

Z2
µ = Zµ sin φ + Z ′

µ cos φ, (3.18)

where φ is defined by

tan2 φ =
M2

Z − M2
Z1

M2
Z2 − M2

Z

, (3.19)

and the physical mass eigenvalues

M2
Z1 =

1
2

[
M2

Z + M2
Z′ −

√
(M2

Z − M2
Z′)

2 + 4 (M2
ZZ′)

2
]

,

(3.20)

M2
Z2 =

1
2

[
M2

Z + M2
Z′ +

√
(M2

Z − M2
Z′)

2 + 4 (M2
ZZ′)

2
]

.

(3.21)

From the mixing mass matrix of Z and Z ′ we see that
φ = 0 if vs � vu, vd or

v2
u =

1 − (√
3β + 1

)
s2
W

1 +
(√

3β − 1
)
s2
W

v2
d. (3.22)

Here A, Z1 correspond to the neutral gauge bosons of the
SM (γ, Z), and Z2 is a new neutral gauge boson.

To finish this section, we note that the matching condi-
tion of the coupling constants (3.6) at the SU(3)L⊗U(1)X

breaking is very obvious as the matching in the SM. It is
not dependent on the constraint vs � vu, vd as in the liter-
ature [6]. After the matching, we rewrote the photon field
with the coefficients in the Weinberg mixing angle, and
then taking the exact diagonalization of the mass matrix
for the neutral gauge bosons.

4 Conclusion

In this paper, the photon eigenstate and the matching of
the coupling constants in 3-3-1 models are obtained in
general form containing Higgs triplets, antitriplets as well
as the sextet. We emphasized that the matching of the
coupling constants is not dependent on the condition that
the vacuum expectation value of the Higgs boson of the
first step of breaking symmetry must be much larger than
those of the second step, namely 〈s〉 � 〈u〉, 〈d〉.

This technique can be extended for electroweak mod-
els which are based on the larger gauge groups such as
SU(3)C ⊗ SU(4)L ⊗ U(1)X [14].
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